RESEARCH BRIEF

On the Introduction of Genetically Modified Leishmania outside the Laboratory

FREDERICO J. GUEIROS-FILHO AND STEPHEN M. BEVERLEY

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, U.S.A.

The recent development of DNA transfectional methods for Leishmania and other parasites has provided powerful tools for studying gene function and expression and altering the parasite genome (Kapler et al. 1990; Laban et al. 1990; LeBowitz et al. 1990; Lee and Van der Ploeg 1990; Ten Asbroek et al. 1990; Eid and Sollner-Webb 1991; Goonewardene et al. 1993; Soldati and Boothroyd 1993). The growing sophistication and utility of these methods has led many investigators to consider applications of genetically engineered parasites outside the research laboratory. One promising direction is the development of safe attenuated vaccine lines capable of inducing protective immunity. For example, by homologous gene targeting we have generated an attenuated line of Leishmania major that shows some promise in vaccination trials in mice (Cruz et al. 1991; Titus et al. in preparation). However, creation of genetically attenuated parasites typically requires the introduction of dominant selectable markers, and it is important to consider whether these could pose a potential problem in situations outside the laboratory.

As an illustration we consider the attenuated L. major vaccine line mentioned above. This parasite is a thymidine auxotroph (thd) which is inviable in mouse infections, a phenotype arising from deletion of the bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS). This was accomplished by two rounds of homologous gene replacement, first using a targeting construct containing the neomycin phosphotransferase gene (NEO) followed by one using the hygromycin B phosphotransferase gene (HYG; Cruz et al. 1991). These two markers are effective dominant selectable markers in Leishmania and many other organisms and have been used in double gene targeting protocols to generate a number of homozygous gene knockouts.

Both the NEO and the HYG resistance markers originated in aminoglycoside-resistant prokaryotes, as do many other dominant selectable markers in common usage. Aminoglycosides are not usually considered to be effective as therapeutic agents for trypanosomatids (Berman 1988) and initially one might have little concern about the environmental introduction of engineered trypanosomatids expressing such resistance markers. However, transfectional studies of many pathogenic Leishmania have shown that these species are more sensitive to the aminoglycosides G418 and hygromycin B than mammalian cells (EC50's less than 50 µg/ml vs. >100 µg/ml; Southern and Berg 1982; Bernard et al. 1985), which suggested the possibility that therapeutically effective aminoglycosides could be found. In fact, several workers had shown previously that paromomycin (aminosidine) has clear leishmanicidal activity and is currently being considered as an alternative to antimonials for the treatment of visceral leishmaniasis (Chunge et al. 1990; Scott et al. 1992; Thakur et al. 1992) and as a topical medication against cutaneous leishmaniasis (El-On et al. 1988, 1992). It is well established from bacterial systems that aminoglycoside resistance genes can confer cross-resistance to other related compounds (Umezawa and Kondo 1982). NEO in particular is known to detoxify the aminoglycosides G418, kanamycin, and paromomycin, and we decided to investigate whether our transformed Leishmania lines expressing NEO and HYG were cross-resistant to paromomycin.

Three lines of L. major developed by homologous gene targeting were examined: one containing a replacement of a single allele of DHFR-TS with NEO (+/NEO; Cruz and Beverley 1990), one with a single replacement of DHFR-TS with HYG (+/HYG), and the thd auxotroph described earlier which contains replacement of both DHFR-TS alleles with NEO and HYG (NEO/HYG; Cruz et al. 1991). Promastigotes of the wild-type and the single HYG replacement lines were inhibited similarly by paromomycin, with EC50's of 12–18 µg/ml, comparable to those reported previ-
ously (El-On et al. 1991; Fig. 1A). In contrast, the single and double replacement lines bearing NEO were more than 150-fold resistant, showing little or no growth inhibition at 3 mg/ml of paromomycin (Fig. 1A). Interestingly, the resistance of the NEO replacement lines to the common selective aminoglycoside G418 was only about 10-fold higher than the wild-type or HYG replacement line (6-9 μg/ml vs. 0.8–1.1 μg/ml; Fig. 1B). This showed that the NEO transfectants are more efficient in the detoxification of paromomycin than they are for G418. This may arise from differences in the catalytic efficiency of NEO, the sensitivity of the Leishmania aminoglycoside target(s), or the pharmacokinetic properties of the drugs (uptake, compartmentalization, and excretion). Interestingly, these data suggest that paromomycin could be considered an alternative to G418 for use in routine laboratory transfections, as it is less expensive and shows more discrimination between sensitive and resistant parasites.

The fact that NEO confers cross-resistance to the clinically relevant anti-leishmanial paromomycin would seem to argue strongly against its use in parasites outside the laboratory. One could argue that genetically attenuated parasites expressing NEO would pose little hazard, since, being designed to perish, there would be little opportunity to encounter natural virulent lines. Even if co-infection occurred, several workers have found that sexual exchange is uncommon or even absent in Leishmania (Tibayrenc et al. 1990; Panton et al. 1991). However, other workers have noted the existence of occasional hybrid parasites, which implies that exchange is possible (Kelly et al. 1991; Momen et al. 1992). Thus, one cannot absolutely rule out the possibility of transmission of NEO into natural populations, although in our opinion this would be extremely unlikely.

Fortunately, the rapid evolution of DNA transfection technology in parasites suggests numerous alternatives for generating attenuated parasites that would bypass the concerns raised above. The first possibility is using alternative dominant selectable markers for which there is little concern about the consequences of environmental release. For Leishmania, these may include the PHLEO marker, which mediates resistance to bleomycin and its analogs (Freedman and Beverley 1993), or the Leishmania N-acetyl glucosaminyl transferase, which mediates tunicamycin resistance when overexpressed (Liu and Chang 1992). Alternatively, transfection strategies which ultimately remove the unwanted selectable marker, such as “hit-and-run” (Hasty et al. 1991) and “tag-and-exchange” schemes (Askew et al. 1993), or other procedures exploiting gene conversion and/or chromosomal segregation, could be used. By carefully considering the properties of the available selectable markers and their intended application outside the laboratory prior to their release, it seems likely that concerns about the safety of genetically engineered parasites can be eliminated, permitting the full potential of this emerging technology to be applied to these deadly tropical diseases.

(We thank F. Modabber, R. Titus, and D.F. Wirth for discussions, and L. Dolfi (Farmitalia) for paromomycin. Supported by grants from the NIH, the UNDP World Bank/WHO Special Programme in Research and Training in Tropical Disease Research, and the

![Fig. 1](image-url)
Fig. 1. Growth inhibition of wild-type and transfected L. major by paromomycin (A) or G418 (B). Promastigotes were seeded at 10⁵ cells/ml in M199 medium (Kapler et al. 1990) containing the indicated concentrations of drug and periodically counted with a model ZF Coulter counter. The percentage of growth relative to the wild-type control lacking drug, counted at the time it had attained late log phase, is shown. For the ++ NEO/HYG line, thymidine was added to a concentration of 10 μg/ml. The average and standard deviations for triplicate points in one experiment are shown; two other experiments gave similar results. +/+ (clone CC-1), △; +/NEO (clone E2-7D2), ○; +/HYG (clone E8-5C5), □; NEO/HYG (clone E10-5A3), ■.
Harvard MacArthur Foundation Consortium for Molecular Parasitology.

REFERENCES

Received 5 November 1993; accepted with revision 18 March 1994.