Characterization of a Defensin from the Sand Fly Phlebotomus duboscqi Induced by Challenge with Bacteria or the Protozoan Parasite Leishmania major

Nathalie Boulanger,1* Carl Lowenberger,2 Petr Volf,3 Raul Ursic,2 Lucie Sigutova,3 Laurence Sabatier,4 Milena Svobodova,3 Stephen M. Beverley,5 Gerald Späth,5 Reto Brun,6 Bernard Pesson,7 and Philippe Bulet4†

INSERM U3921 and Faculté de Pharmacie,7 Illkirch, and IBMC, Strasbourg,4 France; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada2; Faculty of Sciences, Charles University, Prague, Czech Republic3; Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri7; and Swiss Tropical Institute, Basel, Switzerland6

Received 5 December 2003/Returned for modification 12 January 2004/Accepted 1 August 2004

Antimicrobial peptides are major components of the innate immune response of epithelial cells. In insect vectors, these peptides may play a role in the control of gut pathogens. We have analyzed antimicrobial peptides produced by the sand fly Phlebotomus duboscqi, after challenge by injected bacteria or feeding with bacteria or the protozoan parasite Leishmania major. A new hemolymph peptide with antimicrobial activity was identified and shown to be a member of the insect defensin family. Interestingly, this defensin exhibits an antiparasitic activity against the promastigote forms of L. major, which reside normally within the sand fly midgut. P. duboscqi defensin could be induced by both hemolymph or gut infections. Defensin mRNA was induced following infection by wild-type L. major, and this induction was much less following infections with L. major knockout mutants that survive poorly in sand flies, due to specific deficiencies in abundant cell surface glycoconjugates containing phosphoglycans (including lipophosphoglycan). The ability of gut pathogens to induce gut as well as fat body expression of defensin raises the possibility that this antimicrobial peptide might play a key role in the development of parasitic infections.

MATERIALS AND METHODS

Insect infections. Sand flies (Phlebotomus duboscqi Senegal strain, obtained from R. Killick-Kendrick, Imperial College at Silwood Park, Ascot, United Kingdom) were reared under standard conditions at 26 to 28°C. For systemic infections with bacteria, male and female insects were pricked in the thorax with a thin needle dipped in a diluted mixture of Erwinia carotovora subsp. carotovora (a phytopathogenic gram-negative bacterium that uses flies as vectors). For natural infections (per os) with bacteria, an overnight diluted culture of E. carotovora was overlaid on an apple slice. Insects were left in contact with the bacterium-infected food for 24 h before their hemolymph or their gut was

* Corresponding author. Mailing address: INSERM U392, ULP, Faculté de Pharmacie, 67400 Illkirch, France. Phone: (33) 3 90 24 41 51. Fax: (33) 3 90 24 43 08. E-mail: nboulanger@aspirine.u-strasbg.fr.
† Present address: Atheros Laboratories, CH-1233 Bernex-Geneva, Switzerland.
collected. After the different protocols of infection, insects were maintained at 28°C.

For *Leishmania* infections, we used amastigotes of *L. major* (LV561, MHOM/IL/67/Jericho-II) and promastigotes of three lines of *L. major* (LV39 clone 5, MRHO/SU/59/P): the WT and mutants defective either in LPG1 (*H9262* or *H11002*) or LPG2 (*ppg1−* or *ppg2−*) through elimination of the respective genes by homologous gene replacement. The *ppg1−* mutant lacks a putative galactosyltransferase responsible for the formation of the LPG core but is otherwise normal in the expression of surface glycoconjugates (30, 34), while the *ppg2−* mutant is defective in the synthesis of all phosphoglycans (11, 25, 36). Promastigotes were grown at 25°C in 199 medium supplemented with 10% heat-inactivated fetal bovine serum and 25 mM HEPES (pH 7.4). Transfectants were maintained under the selective pressure of 15 μg/ml hygromycin B (*ppg2−*) or hygromycin and 20 μM puromycin (*ppg1−*). For infective blood meals, promastigotes were washed by centrifugation, counted, and diluted in phosphate-buffered saline (PBS). The amastigotes were produced in BALB/c mice injected subcutaneously in the rump (10^6 parasites per count, and diluted in phosphate-buffered saline (PBS). The amastigotes were counted on Giemsa-stained smears.

P. duboscqi females, 6 to 8 days old, were fed through a chik skin membrane with heat-inactivated rabbit blood containing 5 x 10^9 logarithmic-phase promastigotes or 1 x 10^8 amastigotes per ml. Blood-engorged females were separated, maintained at 25°C on 50% sucrose, and dissected 4, 8 and 10 days after the infection. Blood feeding and intrathoracic infections were evaluated under a light microscope as described previously (10).

To collect hemolymph from each insect, PBS was injected into the insect thorax with a fine capillary with the Nanoject system (Drummond Scientific). Hemolymph was aspirated and transferred into a 0.1% trifluoroacetic acid solution for protein precipitation. The procedures were done twice.

Isolation and structural characterization of defensin. Sand fly hemolymph (from females) was centrifuged at 1000 g and the supernatant was subjected to reverse phase-high performance liquid chromatography (RP-HPLC) on a narrow Aquapore OD RP100 C18 column (220 x 2.1 mm, Brownlee), with a linear gradient of 2 to 60% acetonitrile (ACN) in acidified water (0.05% TFA) over 90 min at a flow rate of 0.2 ml/min at 35°C. The column effluent was monitored by absorbance at 214 nm and fractions were hand collected. After evaporation under vacuum (SpeedVac; Savant), fractions were reconstituted in MilliQ water (Millipore), and eluted with 4 % ACN. An aliquot of the eluate (0.5 ml) was analyzed by MALDI-TOF MS, and subjected to primary structure determination.

Reduction and S-pyridylethylation of defensin. The purified active peptide was subjected to reduction with dithiothreitol and alkylation with 4-vinylpyridine in a flow of nitrogen for 24 h. The purified peptide was then subjected to MALDI-TOF MS analysis. MS measurements were performed on a Bruker Ultraflextreme (Bruker Daltonics, Bremen, Germany) BIFLEX III mass spectrometer in a positive linear mode with an external calibration. Samples were prepared according to a previously described protocol (19).

RNA isolation and cDNA determination. Total RNA was collected from whole blood or tissues of infected (or mock infected) sand flies. RNA was extracted using TRIzol (Molecular Research Center) following the manufacturer’s instructions. Total RNA was quantified with a Biophotometer (Eppendorf, Germany), and 1 μg of total RNA was reverse transcribed as described previously (24) with the primer 5’-CGGCGGATTCACCAGACGACGTC-3’. Degenerate PCR was done with the RT primer and a forward degenerate primer (5’-GNGCAYGCGCTGTYGGC GC-3’) designed according to the amino acid sequence obtained by Edman degradation. PCR conditions were 95°C (3 min), and 30 cycles of 10 s, 95°C (10 s), 67°C (30 s), followed by a 5-min extension period at 72°C on an iCycler (Idaho Technologies, Inc., USA). PCR products were size fractionated on a 1.2% low-melting-point agarose gel and visualized on a BioDoc gel documentation system (UVP, Upland, Calif.). Bands of the predicted size were excised, placed at 65°C to lyse the fragment, and cloned into a P-GEM-T vector (Promega, Madison Wis.) following the manufacturer’s instructions.

Production and purification of the recombinant sand fly defensin. The peptide was produced in *S. cerevisiae* according to a previously described protocol (20). Briefly, 12 liters of supernatant from recombinant yeast culture was harvested, centrifuged, and subjected to reverse phase-HPLC, cation-exchange chromatography, and RP-HPLC. Fractions with activity against gram-positive bacteria (*Micrococcus luteus*) were further purified to homogeneity on a microbore Aquapore RP 300 C8 column (1 by 100 mm; Brownlee) with linear biphasic gradients of ACN in acidified water over 60 min at a flow rate of 80 μl/min. The column effluent was monitored by absorbance at 214 nm and 35°C. The purity of the active fraction was controlled by MALDI-TOF MS analysis.

Liquid growth inhibition assay. The activity spectrum (MIC) of sand fly defensin (concentration range, 0.2 μM to 100 μM) was determined for bacteria and fungi by liquid growth inhibition assays (16). The strains used were from private and public collections (33). *Aedes aegypti* defensin A was used as an internal control to allow assay validation (i.e., a minimum of 3 representative pathogen species: *Staphylococcus aureus, Fusarium culmorum*, and *Candida glabrata*). The assays were done twice.

Antiparasitic assay of *Leishmania*. Briefly, 2.5 x 10^3/ml promastigote forms (insect stages) of *L. major* (strains LEM771 and MHOM/EY/84) were incubated at 27°C with or without peptide dilution (highest concentration of defensin tested, 122 μM) in a 96-well microtiter plate (7). The test was run twice in duplicate, with three replicates and background determined. After 72 h of incubation, Alamar blue was added; plates were read with a microplate fluorometer system (Spectramax Gemini; Molecular Devices), and values of drug concentrations tested, 122 μM were obtained. The MIC was defined as the lowest concentration of defensin killing 50% of *L. major* promastigotes.

Quantitative PCR on whole sand flies. For estimation of mRNA abundance, we used real-time quantitative PCR (Q-PCR) methods. We first amplified and purified PCR products for sand fly defensin and actin sequences. We then established standard curves for actin and defensin, using serial dilutions (1 ng to 10^-14 ng) of the purified cDNAs. The regression line for defensin has an R² value of 0.9928, an efficiency of 0.81, and parameters for M of ~0.258 and for B of 1.997. The regression line for actin has an R² value of 0.99996, an efficiency of 0.85, and parameters for M of ~0.266 and B of 2.274. Subsequently, cDNAs from our experimental samples were tested under the same conditions along with our standards, and relative amounts of defensin were determined.

Reverse transcription was done as described above with 1 μg of total RNA from whole bodies of naive, bacteria-inoculated, and bacteria- or parasite-exposed insects. Samples were run on a Bio-Rad iCycler and a Corbett Rotor-Gene machine under the following conditions: 95°C (2 min); and 40 cycles of 95°C (30 s), 62°C (30 s), and 72°C (1 min). PCR reagents were similar to those for regular PCR with the addition of 1 μl of a 1/10,000 dilution of Sybr-Green I (Sigma) to measure the amounts of double-stranded DNA produced in the reaction and 2.5 μl of a 1/10,000 solution of fluorescein to control for background fluorescence. The amount of defensin or actin was calculated from the standard curves we had generated, and the relative amount of defensin produced per unit of actin was calculated for each sample. Q-PCR was done on samples collected from different batches of immune-stimulated or naive insects. Each analysis was done at least five times.
The antimicrobial activity of defensin, detected by a solid growth inhibition zone assay, is expressed by black bars, representing the level of activity in millimeters against the bacteria (Fig. 1). After MALDI-TOF MS analysis and screening of the HPLC fractions revealed the presence of two fractions with activity against gram-positive organisms, corresponding to the sand fly defensin.

The complete cDNA sequence was obtained by 5′ rapid amplification of cDNA ends-PCR on the cDNA isolated from bacteria-inoculated insects, as described in Materials and Methods. The sand fly defensin cDNA contained 480 bp (Fig. 2). This comprised a 5′ untranslated region (5′UTR) of 69 bp, a coding region of 294 bp, a stop codon (TAA), a 100-bp 3′UTR containing a polyadenylation consensus sequence (AATAAA) at position 73 to 78 of the mature peptide is shown in boldface type. The stop codon (TAA) is terminated with the characteristic dipeptide KR cleavage site (AATAAA) is underlined.

The sequence of the mature peptide was aligned with selected sequences of insect defensins available in GenBank. The sand fly defensin aligns closely to other members of the insect defensins, especially those from Diptera (Fig. 3). The P. duboscqi defensin shares 79 and 76% identity with mosquito defensins from A. aegypti and Anopheles gambiae, respectively, but has a unique arginine residue at the C-terminal part of the molecule. Less identity was shared with the stable fly, Stomoxys calcitrans (60%), Glossina morsitans (37.5%) (suborder Brachycera), and the bug Rhodius prolixus (55%) (Hemiptera).

Induction of defensin in insect midgut and in hemolymph during different protocols of infections. MS analysis of sand fly gut tissue revealed that defensin peptide was induced after per os infection with the bacteria E. carotovora supsp. carotovora (Fig. 4A). Since sand flies are natural vectors for protozoan parasites of the genus Leishmania, we examined sand flies infected per os with L. major by MS and found that the defensin was induced in the gut (Fig. 4B) and the hemolymph as well (Table 1). This induction was specifically caused by the pathogen, since the peptide was not found in either naive insects or in insects after an uninfected blood meal. Defensin synthesis peaked at 24 h post per os infection with bacteria and at day 4 when infection was performed with Leishmania.
FIG. 4. MS analysis of sand fly defensin induction in gut tissue (A) 24 h after per os infection with bacteria (E. carotovora subsp. carotovora) and (B) 4 days after per os infection with L. major. The results shown (A and B) represent data from two separate experiments. For bacterial infections, defensin was detected in individual midguts; for parasitic infections, defensin was detected in a pool of 10 midguts (three pools for each protocol).

TABLE 1. Presence of defensin in crude sand fly hemolymph measured by MALDI-TOF MS after different protocols of infection

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Day 1</th>
<th>Day 4</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>–</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pricked with E. carotovora subsp.</td>
<td>+++</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>p.o. infection with E. carotovora subsp.</td>
<td>++</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Negative blood meal</td>
<td>–</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>L. major</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Mutant lpg1</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Mutant lpg2</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

*p.o., per os; ND, no data.

TABLE 2. Antimicrobial activity of recombinant defensins from P. duboscqi

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Phlebotomus defensin</th>
<th>Aedes defensin C</th>
<th>Anopheles defensin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. aureus</td>
<td>0.78–1.56</td>
<td>1.56–3.12</td>
<td>0.4–0.75</td>
</tr>
<tr>
<td>Filamentous fungi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td>12.5–25</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>F. culmorum</td>
<td>1.56–3.12</td>
<td>50–100</td>
<td>3–6</td>
</tr>
<tr>
<td>F. oxysporum</td>
<td>3.12–6.25</td>
<td>ND</td>
<td>1.5–3</td>
</tr>
<tr>
<td>Neurospora crassa</td>
<td>6.25–12.5</td>
<td>ND</td>
<td>3–6</td>
</tr>
<tr>
<td>T. viride</td>
<td>3.12–6.25</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Trichophyton mentagrophytes</td>
<td>25–50</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Yeast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>6.25–12.5</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>25–50</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>Parasites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. major promastigote forms</td>
<td>68–85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Activity of recombinant defensins against bacteria, fungi, yeast, and parasites. The activity of sand fly defensin was compared to those from A. aegypti and A. gambiae (39). Values of inhibition of gram-positive bacteria, fungi, and yeast are MICs, given in micrometers. The highest MIC concentration tested was 100 μM. NA, no activity; ND, no data.

b Activity of P. duboscqi against parasites was measured by an Alamar blue assay. Defensin was incubated at various concentrations (highest concentration tested, 122 μM). Values shown are IC50s, in micrometers.

Induction of defensin mRNA by bacteria introduced by different routes. First, defensin mRNA levels were assessed after bacterial infections by Q-PCR, with actin as a control mRNA. Whole bodies of naïve sand flies showed a very low baseline of defensin mRNA, which was arbitrarily given a relative expression level of 1 (Fig. 5). Flies pricked with bacteria (systemic infection) demonstrated a 490-fold increase in defensin transcripts compared with naïve insects, while flies infected per os with bacteria demonstrated a 32-fold increase in defensin transcripts. These data indicate that the injection of bacteria into the hemolymph induced higher levels of defensin mRNA than did the ingestion of bacteria.

Induction of defensin mRNA by Leishmania. We then checked the kinetics of induction of the sand fly defensin following infection with L. major. In the natural infectious cycle, after biting an infected host sand flies are initially infected by the amastigote form of the parasite, and the parasite differentiates to the infective promastigote form during the first day and replicates in this form thereafter. During the first few days within the fly, the blood meal containing parasites is enclosed by the midgut peritrophic membrane, which disperses after a few days. At that time, parasites bind to the midgut wall through specific interactions involving the abundant surface glycolipid LPG (31), which are required for survival. We measured defensin mRNA expression at day 1 (differentiation from amastigotes to promastigotes), day 4 (rapid multiplication), and day 10 (late-stage) infections.

We first analyzed defensin mRNAs in whole-fly preparations by Q-PCR methods with amastigote-induced parasitic infections. Relatively little defensin mRNA was induced until day
10, when a fourfold increase was found. At this time, parasites were abundant and in the promastigote form. The induction was specific, since a parasite-negative blood meal did not induce defensin transcription (Fig. 6A).

We next analyzed defensin mRNA levels after infection with promastigotes. In these experiments, defensin mRNA induction was induced strongly at day 4 and day 10 (23 and 12 fold, respectively). Given that amastigotes differentiate rapidly to promastigotes, we were surprised that promastigote infections gave rise to a stronger level of induction; this phenomenon may warrant additional study in the future.

Role of LPG and related phosphoglycans in defensin expression. The abundant promastigote surface glycoconjugate of *L. major* LPG was demonstrated to have a major role in parasite survival in sand flies (31), and we asked whether this surface antigen might modulate defensin induction. For these studies, we used two *L. major* mutants that were constructed in WT strain LV39 clone 5: *lpg1* /H11002, which specifically lacks LPG, and *lpg2* /H11002, which lacks LPG as well as all related phosphoglycans.

Since previous studies had been performed with the vector *Phlebotomus papatasi*, we first verified that these mutants behaved similarly in *P. duboscqi* (Fig. 6C). At day 4 following promastigote infection, the WT and *lpg1*− developed similarly, since both produced very high infection rates (100% of flies) with a majority of moderate infections. On the other hand, *lpg2*− infections were found in 67% of the females and were less intense at day 4. At days 8 and 10, heavy infections in the WT strain with massive colonization of the thoracic midgut and stomodeal valve highly predominant (87% at day 8 and 100% at day 10). In *lpg1*−, the intensity of infections decreased with time. Heavy infections were found in 40% of flies at day 8 and in 7% at day 10. At day 10, few parasites reached the stomodeal valve (47% of infected females), but infections were less intensive than in the WT. For *lpg2*−, the infections were all negative at days 8 and 10.

![FIG. 5. Assessment of defensin transcription in whole bodies of *P. duboscqi* with Q-PCR after bacterial infections. Naïve (uninfected insects), bacterium-pricked insects at 24 h (Bact-24H) and per os bacterium-infected insects at 24 h are the three protocols studied. The values determined with naïve insects were arbitrarily given a value of 1, and other treatments are expressed as a difference in transcript numbers. Each bar represents an average of six assessments by Q-PCR.](image1)

![FIG. 6. (A) Defensin transcription in whole bodies of *P. duboscqi* after ingestion of a negative blood meal or amastigote forms of *L. major* (LV561). (B) Defensin transcription in whole bodies of *P. duboscqi* after *Leishmania* infection with promastigote forms of WT (LV39) and two mutants deficient in the LPG surface molecule (*lpg1*− and *lpg2*−). (C) Rates and intensities of infections in *P. duboscqi* females presented in panel B. Infections were classified into three categories: light (<100 parasites/gut), moderate (100 to 1,000 parasites/gut), heavy (>1,000 parasites/gut).](image2)
These data correspond well with the previous observations with \textit{P. papatasi} of this parasite-vector model (36). For \(lpg1^{–}\) infections, small differences were seen from those observed by Sacks et al. (31), as in \textit{P. papatasi}, \(lpg1^{–}\) infections were maintained up to the time of peritrophic membrane dispersal and defecation (day 4) but were then lost, whereas with \textit{P. duboscqi}, \(lpg1^{–}\) infections persisted at a low level through day 10 (Fig. 6C). This observation seems to be related to a difference in vector competence of these two sand fly species, as \textit{P. duboscqi} supports development of various \textit{Leishmania} species, whereas \textit{P. papatasi} is only susceptible to \textit{L. major} with terminally exposed galactose residues on LPGs (28). For both species, \(lpg2^{–}\) parasites were rapidly lost at all times studied.

Comparisons of promastigote infections of \textit{P. duboscqi} by WT, \(lpg1^{–}\), and \(lpg2^{–}\). \textit{L. major} showed that the mutant parasites resembled the WT in showing maximum defensin mRNA expression on day 4 and detectable transcript on day 10, but overall the levels were 4- to 10-fold lower than with the WT (Fig. 6B). While these data could be taken as evidence for a role for LPG, this conclusion must be tempered by the fact that these mutants also showed greatly reduced numbers in infected flies at most of the time points studied (Fig. 6B versus C). Perhaps the best evidence specifically associating LPG with defensin induction involves comparisons of the \(lpg1^{–}\) parasite against the WT at day 4. Quantitation of parasite numbers (Fig. 6C) shows an average of 580 ± 160 versus 480 ± 400 parasites/fly (values are averages ± standard errors; in experiments with 10 or 11 flies, respectively) for WT and the \(lpg1^{–}\) mutants. We believe this minor difference in parasite number is unlikely to account for the ~5-fold drop in defensin expression in the \(lpg1^{–}\) mutant, and thus these data suggest that LPG may be an important factor.

DISCUSSION

In insect vectors, it has been suggested that immune peptides might play a role in limiting parasitic infections (4, 6) and might help explain vector competence (5). Bloodsucking members of the order Diptera that carry pathogenic trypanosomatids (\textit{Trypanosoma}, \textit{Leishmania}) are good models to study the role of epithelia in local immune response and the implication of AMPs in such a process, since these parasites do not develop in insect hemolymph. In these models, AMP synthesis cannot be attributed to the tissue damage occurring during the migration of parasite from the gut to the hemolymph, as occurs in mosquitoes infected with \textit{Plasmodia} or filarial worms. Although the presence of AMPs in sand flies was already suspected during a bacterial systemic infection (27), this represents the first report of the induction of AMPs in sand flies during the development of \textit{Leishmania}. Using biochemical and molecular approaches, we identified a single AMP, a new member of the widespread defensin family that is expressed in response to various pathogen infections. This defensin is detected in the gut tissue and in the hemolymph during oral infection by pathogens. Defensins are AMPs present in animal and plant kingdoms, suggesting a major role in the innate immunity of organisms. In invertebrates, defensins have been found in all insect vectors studied so far (6, 23, 24, 39). Consequently, their role during parasitic infections appeared particularly interesting to analyze.

Sand fly defensin exhibits a broad spectrum of activity against pathogens such as bacteria, yeast, and filamentous fungi. Most interestingly, \textit{P. duboscqi} defensin showed a significant antiparasitic activity. This is the first time that an AMP is described with an antiparasitic activity in a natural host-parasite system. Most insect AMPs that have been studied for possible antiparasitic activity were tested in heterologous systems: frog magainin and giant silk moth cecropin with \textit{Plasmodium} (13), \textit{Drosophila} cecropin with \textit{Trypanosoma cruzi} (12), insect defensins with \textit{Plasmodium} (32), \textit{Drosophila} cecropin with \textit{Leishmania} (1), spider gomisin with \textit{Leishmania} (33), \textit{Phormia} dipterincin with \textit{Trypanosoma} spp. (14). The only natural system tested so far was \textit{Plasmodium}-mosquito, but results were not as conclusive. Indeed, one study (24) revealed that before an infective blood meal with malaria, bacteria-challenged \textit{Aedes} exhibits a lower prevalence of malaria oocysts, which suggests that the upregulation of immune peptides due to the bacterial infection might affect parasite development. A second study showed a very marginal effect of gambicin, an AMP isolated from an \textit{A. gambiae} cell line, on a \textit{Plasmodium} ookinete in vitro (38).

Flagellate parasites and bacteria present in the digestive tract induce AMP secretion locally (gut) and systemically (hemolymph) in \textit{Phlebotomus}, \textit{Drosophila}, and \textit{Glossina}, even though no parasites are present in the hemolymph (4, 6, 14). Conversely, experimental systemic infection of the hemolymph with bacteria was shown to induce a local immune response with synthesis of AMPs in the insect midgut (21, 23). Therefore, the gut tissue and the fat body (the major site of peptide synthesis in insect hemolymph) seem to be two essential organs in immunity. Immune signals such as NO or \(\text{H}_2\text{O}_2\) might be used for communication signals between these two organs to protect the whole insect from lethal infections (14, 15).

The discovery of a new AMP for an important protozoan pathogen in the insect vector raises the possibility that it plays an important role during parasitic infections. The sand fly defensin was active against the promastigote stage of \textit{L. major} normally found in the insect midgut, and parasite infection led to its induction at the mRNA and protein levels in a manner related to specific parasite glycoconjogates such as LPG, as well as to the intensity of infection. Although we were not able to quantify defensin secretion in the gut, we clearly detected its presence by MS analysis of gut tissue of insects infected per os with bacteria or with \textit{Leishmania}. We are thus tempted to speculate that AMPs may participate in a subtle control of parasite population in sand fly midgut, perhaps in combination together with digestive enzymes and the peritrophic matrix. This observation is in perfect agreement with previous studies that also established that the gut epithelium participates in the control of infections by secreting AMPs (5, 21, 23, 37, 38). Our preliminary estimates suggest that the active concentration of sand fly defensin in vitro on promastigotes is in the range normally found in insects. Indeed, in \textit{Drosophila}, seven AMPs have been identified (17), and the concentration of these AMPs ranges from 1 \(\mu\text{M}\) for defensin to 100 \(\mu\text{M}\) for drosomycin (9).

This study underlines the complexity of the interaction of insect vectors with the parasites they harbor and transmit to the vertebrate host. In the continuous and urgent search for new strategies to control major human parasitic diseases, AMPs such as \textit{P. duboscqi} defensin might include engineering
transgenic insects to express AMPs and reduce parasite transmission (12).

ACKNOWLEDGMENTS

We thank E. Golightly and M. Oberle for performing the biological assays with Leishmania.

N.B., L.S., and P.B. were supported by grants from CNRS (Centre National de la Recherche Scientifique) and EntoMed (Strasbourg). P.V. and L.S. were supported by GACR grant no 206/03/525. S.M.B. was supported by NIH grant AI31076, and G.S. was supported by the Deutscher Akademischer Austauschdienst (DAAD) and the Human Frontiers Science Program (GFS).

REFERENCES

